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Received 18 January 1973 

Abstract. In this paper, we associate an anisotropic surface energy with a nematic liquid 
crystal-isotropic fluid interface. Employing continuum theory, two sets of simple experi- 
mental situations are examined, in which a solid boundary, a nematic liquid crystal-isotropic 
fluid Interface, and an applied magnetic field act as competing influences upon the orientation 
of the molecules in the liquid crystal. 

1. Introduction 

The idea of associating an anisotropic surface energy with a nematic liquid crystal- 
isotropic fluid interface was apparently first suggested by Oseen (1933). For the interested 
reader, a detailed discussion concerning its motivation is given elsewhere (Jenkins and 
Barratt 1973). Chandrasekhar (1966) and Dubois-Violette and Parodi (1969) include 
various anisotropic surface energy densities in their analyses of the equilibrium shape, 
and internal director configurations of small droplets of nematic liquid crystal suspended 
in an isotropic fluid. In  a recent paper, Jenkins and Barratt (1973) employ a variational 
principle to obtain the equations representing balance of traction and couple at the 
interface. 

In their paper, Jenkins and Barratt (1973) also investigate two simple experimental 
situations. In each, a solid boundary and an interface act as competing influences upon 
the molecular orientation in a layer of nematic liquid crystal, bounded below by a 
horizontal solid surface and above by an isotropic fluid. In this paper, we examine two 
sets of similar experimental situations which utilize a magnetic field as an additional 
orientating influence. In one, the director orientation at the solid boundary is parallel 
to the surface, and the magnetic field is applied either parallel to or normal to this 
boundary. In  the other, a perpendicular director orientation obtains at the solid 
boundary. If these experiments are practical, the analysis indicates that both qualitative 
and quantitative information concerning the anisotropic surface energy, associated 
with a particular interface, could be obtained. 

2. The continuum theory 

This section contains a brief summary of the continuum theory proposed by Oseen 
(1929) and developed by Frank (1958), Ericksen (1962) and Leslie (1968) to describe the 
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static, isothermal behaviour of incompressible nematic liquid crystals. For convenience, 
we choose a set of right-handed Cartesian axes, and employ Cartesian tensor notation. 

As is customary, one associates with the molecular axis a director n of fixed magnitude, 
normalized by 

nini = 1, (2.1) 

and assumes that n and - n are physically indistinguishable. The field equations to be 
satisfied throughout the liquid crystal are 

and 

( E),k -F +$i  = Ani, 

wheref, is the body force per unit volume, $i is the director body force per unit volume, 
and the scalar fields p and 1 arise from the assumed incompressibility of the material 
and the constraint upon the magnitude of the director respectively. Also W is the 
Helmholtz free energy per unit volume, and depends only upon the director and its 
gradients. A possible form for the Helmholtz free energy, which we adopt, is that 
proposed by Frank (1958) : 

(2.4) 
Under isothermal conditions the coefficients ctl, a 2 ,  z3 and u4 are constants, and, if 
W is to be a minimum when the director gradients vanish, Ericksen (1966) has shown 
that they are restricted by the inequalities 

2W = cx,ni,jni,j+cc4ni,jnj,i+(crl - r 2  - ~ ~ ) n ; , ~ n ~ , ~ + ( a ~  -a2)ninjn,,ink,j. 

a1 > 0, a2 > 0, a3 2 0, Ia4I 6 a ~ ,  a2 +a, 6 2a1. (2.5) 
In this paper, it is assumed that the external body forces arise from an applied 

magnetic field H a n d  gravity. Consequently, accepting the estimates of Ericksen (1962), 
the body force and director body force are given by 

f, = - x . ~ + ( ( v ,  -v,)Hjnjn,+v2H,}H,,i 
and 

4i = ( V I  - ~ 2 ) H j n j H i ,  

where x is the gravitational potential, and v 1  and v 2  are the constant magnetic suscepti- 
bilities parallel and perpendicular to the molecular axis respectively. In this event, one 
is able to show that the overdeterminate system of seven equations (2.1), (2.2) and (2.3) 
for the unknown fields p ,  1 and n may be replaced by the four equations (2.1) and (2.3), 
and the relation 

p = po-x-w-o (2.8) 

(2.9) @ =  --{ -V2)(Hknk)2 + V 2 H k H k }  

is the magnetic energy per unit volume, associated with an external magnetic field H. 
Henceforth, we assume that 

which determines the pressure. In (2.Q p o  is an arbitrary constant and 

V I  > v 2  > 0, (2.10) 
which insures 0 is a minimum when the director is parallel to the applied magnetic field. 
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Further, we endow a liquid crystal-isotropic fluid interface with a free energy M' per 
unit area, and assume that i t  is a function of the director and the unit outward surface 
normal v. Using invariance arguments, it follows that 

U' = w ( ( v .  n)2). (2.1 1) 

Hence, ignoring the energy associated with the interface between the liquid crystal and 
a solid (Rapini and Papoular 1969), the total energy E of a sample of nematic liquid 
crystal is given by 

(2.12) 

where t' is the volume of the sample and S is that part of its bounding surface which is 
in contact with an isotropic fluid. The rest of the surface bounding the sample is assumed 
to be in contact with a solid. 

In the next section, we seek solutions of the second-order nonlinear differential 
equations (2.3) subject to boundary conditions at both the solid surface and the isotropic 
fluid interface. For a sample of nematic liquid crystal, it is well known (Zocher and 
Coper 1928, Chatelain 1943) that solid boundaries may be treated to obtain a definite 
orientation of the molecular axis at the boundary. Hence it seems reasonable to assume 
that there is a fixed director orientation at a liquid crystal-solid boundary. At a liquid 
crystal-isotropic fluid interface, it is natural to require that force and torque be balanced, 
and to assume that the isotropic fluid exerts only a normal force upon the liquid crystal. 
For the simple geometry and director configurations treated here, Jenkins and Barratt 
(1973) have shown that the force condition is trivially satisfied, while the balance of 
torque requires that in general 

aw a w  
---vv,+- = pni ,  
ani,, dn, 

(2.13) 

where fi  is an arbitrary scalar. Although there is no certainty that it is the case (Saupe 
1960, Rapini and Papoular 1969), we follow the common practice of assuming that the 
boundary conditions are unaffected by the presence of an applied magnetic field. 

3. The solutions 

Here, we consider how an external magnetic field influences the director configuration 
in thin layers of nematic liquid crystal, bounded below by a plane solid boundary and 
above by a plane liquid crystal-isotropic fluid interface. Initially, we prescribe a parallel 
director orientation at the solid boundary, and determine director configurations for 
orientations of the applied magnetic field parallel to and perpendicular to this boundary. 
Next, we examine situations where a perpendicular director orientation is assumed at 
the solid boundary. I f  practical, one could perform these experiments to establish the 
relative importance of the orienting effects of the boundary terms derived from the 
interfacial surface energy compared to those resulting from the presence of solid 
boundaries and an applied magnetic field. 

3.1. Parallel director orientation at the solid boundary 

It  is convenient to choose a set ofcartesian coordinates (x, y ,  z )  so that the solid boundary 
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and interface occupy the planes z = 0 and z = 1 respectively, and such that the orienta- 
tion at the solid boundary is parallel to the x axis. First, we examine the situation in 
which a uniform magnetic field is applied normally to the bounding planes and has 
components 

H ,  = 0, H ,  = 0, H ,  = H .  (3.1) 

n, = cos O(z), n, = 0, n, = sin e(z ) ,  (3.2) 

-n < e n. (3.3) 

I t  seems reasonable to consider director fields of the form 

and initially we assume that 

Utilizing the free energy density (2.4), (2.7), (3.1) and (3.2) in the field equations (2.3), 
one may eliminate to obtain the equation for 8 as 

1 61 2df f(e)e"+T( ) - + v H ~  sin e COS e = 0, 
de 

where 
f(e) = tll cos28+cx, sin28, v = V I  - v 2  > 0, 

(3.4) 

(3.5) 
and a prime denotes a derivative taken with respect to z. I t  follows from (2.5) that the 
function f ( 0 )  is non-negative, and throughout this paper it is assumed to be strictly 
positive. After some manipulation employing (2.4), (2.13) and (3.2), one obtains the 
interfacial boundary condition (see Jenkins and Barratt 1973) as 

fS'+i'G sin 28 = 0 on z = 1, (3.6) 
where, for the director field (3.2), a dot denotes differentiation with respect to sin2e, 
and overbars indicate quantities evaluated at the interface. Also, at the solid boundary, 
one has 

8 = 0  on z = 0. (3.7) 
I t  is obvious that the uniform parallel orientation is one possible solution of equation 

(3.4) subject to the boundary conditions (3.6) and (3.7). However, there are other possible 
solutions of the form (3.2). Using (3.6), (3.4) integrates once to yield 

G 2  

f ( 8 ) ( e ' ) 2  = v H 2  sin28+-sin228-sin2B ( v H 2 f  (3.8) 

Two basic types of distortion are possible, depending upon the sign of 8' relative to 
that of 8. 

The first type of distortion we consider occurs when the form of w is such that the 
interfacial condition (3.6) requires 8' and 0 to have the same sign. In this event, it is 
necessary that G < 0 when 0 < 181 < in, and i'G > 0 when $c < 181 < n. In the former 
case the applied magnetic field and the surface couple act together, and in the latter 
they act in opposition. Thus provided 

(3.9) i$ sin 2181 < 0, 

a possible solution of (3.8) subject to (3.6) and (3.7) is the monotone distortion 

(3.10) 
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where 
J 2  

vH k 2  = ----isin228+sin2B. (3.11) 

For 0 < 181 < ~ I L  it is necessary that 

E’ > sin28, 

while for ~ I L  < 101 < IL one requires 

E 2  > 1. 

In addition, the angle at  the interface is related to the layer thickness by 

f(*) 
k 2  - sin2$ 1 = I , ( @  = sgn 8 ( v H 2 ) - ’ / ’  jog [ ) d$. 

(3.12) 

(3.13) 

(3.14) 

In either case, given 1 and H ,  the relation inverse to (3.14) determining a nonzero 181 
in terms of 1 and H need not be single valued. Thus, depending upon the nature of w, 
many solutions of the form (3.2) may be possible. Of all such solutions and the homo- 
geneous orientation, we call that solution which involves the least total energy the stable 
solution. 

With the change of variable 

, sin $ 
sin A = __ E ’  

we rewrite (3.14) as 

where I., is defined by 

From (3.1 1) one obtains 

sin2io = ( ~ v;2; cos2B + 1 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

Assuming that J < 0 in a neighbourhood of 0 = 0, we find the critical layer thickness 
1‘1, at which a smooth transition from the homogeneous orientation to the monotone 
distortion is possible, to be given by 

1; lim /,(e) = e- 0 
(3.19) 

Here, as elsewhere in this paper, the inverse tangent is restricted to take values between 
0 and 3.. 

In the event that J < 0 everywhere in 0 < 181 < in, the surface energy certainly has 
its least value at a director orientation perpendicular to the interface. If, in addition, 
the functional form of w is such that 11(8) is an increasing function of 101 in 0 < 101 < in, 
there is only one value of 181 which satisfies (3.14), whenever 1 exceeds 1 ; .  When 1 < 1; , 
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the only possible solution of the form (3.2) is the uniform parallel orientation. Alter- 
natively, if the behaviour of w is such that the function H(B), defined implicitly by (3.16), 
is a monotonic increasing function of 181 for a fixed layer thickness I, then both the 
distortion and homogeneous orientation are possible solutions, whenever the magnetic 
field strength H exceeds a critical value H, given by 

tanH,(---) 112 = - (cxl v)’I2 H, 
2*(0) . (3.20) 

To discriminate between the various solutions, a stability analysis of the dynamic 
equations would be desirable. However such an analysis does not seem possible at 
the moment, and so we follow Dafermos (1968) in comparing the total energies associated 
with each solution. Intuitively, one anticipates that the solution involving the least 
total energy is the one more likely to occur, and therefore we refer to that solution as the 
stable solution. However, we admit the possibility that a solution of a form not con- 
sidered here may have an even smaller total energy. 

The total energy E of the sample of nematic liquid crystal is given by (2.12), and one 
obtains the energy difference per unit area AE(@ between the total energy E(@ of a 
monotonic distortion and the total energy E(0) of the uniform configuration as 

P l  

AE(B) = 8 J (f(0)(O’)2-vH2 sin28} dz+ w(sin28)-w(0). (3.21) 
0 

Utilizing (3.10) in (3.21) yields 

AE(@ = 3 sgn 8(vH2)”2 f(’) ] ‘ I 2  d$+w(sin28)- w(0). (3.22) 
k 2  - sin2$ 

In appendix 1, we show that the right-hand side of (3.22) is strictly negative for those 
values of 0 for which the surface energy function satisfies the inequality 

w(sin28) - W(O) 1 E(Blm) 
> -  3 sin 28 2 (1 + m sin2@’ 

where 

(3.23) 

(3.24) 

This stability inequality arises in the nonmagnetic case discussed by Jenkins and Barratt 
(1973). For example, for a fixed magnetic field, if 11(8) increases monotonically and the 
surface energy decreases monotonically with 101 in the interval le1 < h, we anticipate 
that the distortion (3.10) commences as the layer thickness exceeds l ; ,  provided (3.23) 
obtains in a neighbourhood of 8 = 0, and persists so long as (3.23) is satisfied. Alter- 
natively, if the layer thickness is fixed, we expect the distortion (3.10) to commence as 
the magnetic field exceeds the critical value given by (3.20), provided H(B) increases 
monotonically with 101. One notes that under the above conditions 

lim ll(B) = CO and lim H(B) = CO, (3.25) 
181 -+n 181-t-n 

and fixed H and 1 respectively. 
When E* > 1, solutions of the form (3.2) with 181 > 71 are also possible. For each 

of these there exists a solution within the interval -71 to n giving the same value to the 
surface energy. For fixed I ,  the former solutions are associated with larger distortional 
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energies. In order to exclude these, it is necessary to show that the increase in distortional 
energy is not compensated for by a sufficiently large decrease in magnetic energy. This 
is easily shown in the event that k 2  > 2. 

For those values of 0 where the form of w requires that, in order to satisfy (3.6), B 
and 8‘ are of opposite sign, a second type of distortion is possible. Here 8’ vanishes at 
least once in the layer, and for distortions to exist one must have 0 < 181 < in.  Hence 
it follows that 

- 
w sin 2181 > 0. (3.26) 

In this event, a possible solution is 

I (82)‘ < 0, 

where 
$2  

v H2 
sin28,, E ~ sin22Q + sin28. (3.28) 

In the above 8, has the physical significance of being the value attained by Q at its 
extremum. The relationship between the layer thickness and the angle at the interface is 

(3.29) 
With the change of variable 

. sin $ 
sin Om 

sin A = 

in (3.29), one obtains 

where 

so 0 < i ,  < 4.. . . sin B 
sin = -. 

sin 8, ’ 

Assuming that % 32 0 in a neighbourhood containing B = 0, we obtain 

(3.30) 

(3.31) 

(3.32) 

(3.33) 

or 

(3.34) 
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The difference per unit area AE(B) in the total energies associated with the distortion 
(3.27) and the uniform parallel orientation is given by 

In appendix 2, it is shown that, for those values of for which the surface energy function 
satisfies the inequality 

3 sin2BE(OI- 1) . 
w(sin20) - w(0) < = w sin2 8, 

2 cos 8 (3.36) 

the right-hand side of (3.35) is strictly negative. In a similar fashion, one may show that 
distortions containing more than one extremum are associated with larger energies 
than the corresponding solution (3.27) having only a single turning point. Consequently, 
if 3 > 0 in 101 < $c and (3.36) obtains in a neighbourhood of 0 = 0, we anticipate that 
the distortion commences as the appropriate critical value is exceeded, provided that 
the corresponding monotonicity condition is satisfied. 

In the above analysis, it has been assumed that 3 is nonzero. However, the analysis 
may be suitably modified for the case when 3 is zero, where the problem is essentially 
that considered by Dafermos (1968) and Leslie (1970). One observes that, if 0 tends to 
values where 3 = 0, the distortions (3.10) and (3.27) smoothly approach the monotone 
solution found by these authors. Thus there exists the possibility of a smooth transition 
between the two distinct types of director configurations. 

In closing this subsection, we consider the situation in which the applied magnetic 
field is parallel to the bounding planes and has components 

H, = H, H, = 0, H, = 0. (3.37) 

For the director field (3.2), one obtains the differential equation governing 8 as 

df f(e)e”++(e’)’--v~~ sin e COS e = 0, 
dB 

(3.38) 

and we assume that the boundary conditions (3.6) and (3.7) still apply. I t  is obvious 
that the uniform parallel orientation is a possible solution of (3.38) subject to (3.6) and 
(3.7). Also, it follows from (3.6) that a monotonic distortion is a possible solution of 
(3.38) subject to (3.6) and (3.7), provided that (3.9) is satisfied. 

Using (3.6), one may integrate (3.38) to obtain 

f(0)(W)2 = vH2(h+sin20), (3.39) 

where 
3 2  

vH23 
h = h(B) 3 __ sin220 - sin’B. (3.40) 

(3.41) 

For a nontrivial solution of (3.38), (3.39) requires that 

h(0) > 0 
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or, equivalently, 

4G2 
f 

0 6 v H 2  < -=-cos28. 

Integrating (3.39), one obtains the monotonic distortion 

(3.42) 

(3.43) 

Thus the relationship between the layer thickness and the angle at the interface is 

With the change of variable 

sin $ 
sinhi. = v, 

(3.44) becomes 

where 2, is defined by 

sin B 
sinhjL2 = F, 

(3.44) 

(3.45) 

(3.46) 

(3.47) 

Provided G < 0 in a neighbourhood of 0 = 0, the critical layer thickness and the critical 
magnetic field strength are given by 

and 

(3.48) 

(3.49) 

respectively. So, for example, with appropriate monotonicity conditions on M: and I ( @  or 
H(@, both the homogeneous parallel orientation and the monotonic distortion (3.43) are 
possible solutions of the differential equation (3.38) subject to the boundary conditions 
(3.6) and (3.7), provided that either 

1 > 1; (3.50) 

for fixed H or 
432 

J;  
v H 2  < vHf <  COS^^, (3.51) 

for fixed I ,  I being given by (3.44). 

distortion and the uniform orientation is given by 
The energy difference per unit area between the total energies of the monotonic 

AE(0) = 3 sgn B(vH2)-  l O g ( h + 2  sin'$)( i;+ '(*) sin2$ 1 ' I 2  dtj  + w(sin28) - w(0). (3.52) 
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For energy functions which satisfy the inequalities (3.23) and (3.42), the energy of the 
homogeneous configuration always exceeds that of the distortion (see appendix 3). 
Hence, if these inequalities apply in a neighbourhood of 0 = 0 and, in addition, the 
appropriate inequality and monotonicity condition obtain, we expect the distortion to 
appear as the layer thickness increases beyond its critical value for fixed H,  or as the 
magnetic field decreases below its critical value for fixed 1. 

3.2. Perpendicular director orientation at the solid boundary 

We now examine, very briefly, situations where the solid surface has been treated so that 
the director orientation there is normal to the boundary. Since the possibilities that are 
of interest are essentially the same as those examined in 5 3.1, only the basic equations 
and the various critical values are given here. For either orientation of the magnetic 
field, it seems reasonable to consider director fields of the form 

n, = sin $(z), n, = 0, n, = cos $(z), 
with 

4(0) = 0,  

-77 < $ <  x. 

and we assume 

(3.53) 

(3.54) 

(3.55) 

We note that other solutions of the form (3.53), not subject to the restriction (3.55), do 
exist but are not investigated here. After manipulation involving (2.4), (2.13) and (3.53), 
the condition for balance of couple at the interface (see Jenkins and Barratt 1973) becomes 

E(+)$‘-% sin 2;j; = 0 on z = I ,  (3.56) 

where 

g($) a3 cos’$+cc, sin’$ (3.57) 

and, because with the director field (3.53) the surface energy is a function of cos’$. a dot 
denotes differentiation with respect to this argument. 

If the magnetic field is parallel to the bounding surfaces and has component form 
(3.37), the equation governing the angle is 

(3.58) 

The uniform perpendicular orientation is an obvious solution of (3.58) subject to (3.54) 
and (3.56). Whenever 5 > 0 in a neighbourhood of $ = 0, a smooth transition to a 
monotone distortion is possible at a value of the layer thickness 1; or field strength H, 
given by 

g(4)4”+%4’)’ -+vH’ dg sin 4 cos 4 = 0. 
d 4  

12 = ( s ) ” 2 t a n - 1 ( (  u3 v H ’)’/’ ) 
2W( 1) (3.59) 

and 

H, = t a n - ’ ( (  c(,v)”~H, ) 
2W( 1) (3.60) 
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respectively. One may show that the distortion is stable, when it exists, provided that 

w(1)- w(cos2$) 1 E($ln) > -  G sin 24 2 (1 + n sin2$)’I2 ’ 

where 

(3.61) 

(3.62) 

If on the other hand G < 0 in a neighbourhood of $ = 0, a smooth transition to a 
distortion similar to (3.27) is possible at a layer thickness 1; or a field strength H,, where 

and 

( a3 v)’”H, 
H, = n- tan-’( - 

) .  2W( 1) 

(3.63) 

(3.64) 

I t  may be shown that the distortion is stable, when it exists, for those values of $ for which 

iG sin - 1) - 
w( 1) - w(cos’$) 2 = ~ sin2$. 

2 cos $ (3.65) 

I f  the applied magnetic field is normal to the bounding planes and has component 
form (3.1), the equation for 4 is 

dg 
d+ 

g(q5)q5” +i(+’)2 - - vH2 sin q5 cos q5 = 0. (3.66) 

One observes immediately that the uniform perpendicular orientation is a possible 
solution of (3.66) subject to (3.54) and (3.56). A smooth transition to a monotone 
distortion is again possible at a layer thickness 1: or field strength H, given by 

( a3 ) l i2 ( 4W2(1) 1 ) - 1 ’ 2  
l f 6 =  - sinh-’ -- 

vH2 u3vH2 
(3.67) 

and 

4J2 
g 

(f) 9 0 < v H ~  < :cos2$, (3.68) 

respectively, provided iG < 0 in an interval about 6 = 0. The monotone distortion is 
stable, when it exists, whenever the inequality (3.65) obtains. 

From the above analysis, it is clear that observations of director configurations in 
such a simple geometry can provide information about the form of the surface energy 
function for a given material. The existence of smooth transitions between either homo- 
geneous orientation and a distorted configuration determines the sign and relative 
magnitude ofthe derivative of the surface energy at orientations parallel to or perpendicu- 
lar to the interface. Further, the persistence of a distortion provides qualitative infor- 
mation about this derivative away from the parallel or perpendicular orientations, and 
the expression relating the layer thickness and the interfacial angle helps to characterize 
the surface energy function. 
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Appendix 1 

We show that if 

i$ sin 2181 < 0 

and 

i$ sin 28E(Blm) 
2(1 + m  sin28)'/2' 

w (sin28)- w(0) < 

then the energy difference (3.22) is always negative. 
From (3.6) and (3 .Q  one obtains 

i$ sin 28 = - sgn 8(a,vH2)'~2(1 +m sin28)"Z(EZ - sin28)'I2. (A.3) 

Upon using (A.2) with (A.3) in (3.22), the energy difference is found to satisfy the inequality 

With the change of variable (3.15), (A.4) becomes 

AE < i sgn  I , ( ~ , V H ~ ) ' / ~ ~ ; ~  JOAo F(A ; E ,  m)(cos 2A - cos ,io cos i) d i ,  

where 

For sake of brevity, we restrict I o  so that 

0 < n < no < $7L 

Integrating the right-hand side of (AS) by parts, one obtains 

aF AE < ~ a l v H 2 ) ' i 2 E 2  sin ,?(cos no - cos A)- dA. an 
Now 

sin A(cos no - COS 2) < 0, 

and 
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whenever m > - 1. Hence the right-hand side of (A.8) is always negative. For 

- in  < i., < i < 0, (A. 11) 

one may repeat the argument with trivial modifications to reach the same conclusion. 

Appendix 2 

In the event that 

G sin 2181 > 0 
and 

G sin 2BE(BI - 1) 
2 cos B = G sin2B, w(sin2B)- w(0) < 

it is possible to prove that the energy difference (3.35) is always less than zero. 
In this case it follows from (3.6) and (3.8) that 

G sin 28 = sgn B ( c t , ~ H ~ ) ” ~ ( 1  + m  sin2B)1’2(sin2@,- sin28)1’2. 

(A.12) 

(A.13) 

(A.14) 

Utilizing (A.13) in (3.35) and (A.14) in the resulting expression one finds, after making the 
change of variable (3.30), that 

A E  < $cclvH2)1’2 sin2@, F ( i ;  sin2@,, m) cos 21, di, 

+ F(1.; sin2e,, m)  cos 2A di+)F(1., ; sin2@,, m )  sin 2 i 1 \ ,  (A.15) 
J i ,  I 

where the function F is defined by (A.6). After integrating the second integral in (A.15) 
by parts, one may rewrite (A.15) as 

n / 2  ZF 
A E  d $ Z ~ V H ~ ) ’ / ~  sin2@, F cos 21 d 2 - i  I, -sin 2;. di. 

i?i 

It  follows from (A.6) and (A.lO) that 

provided m > - 1. Hence the right-hand side of (A.16) is always less than zero. 

Appendix 3 

Finally we show, here, that if 

% sin 2181 < 0 

and 

% sin 28E(81- 1) 
2 cos B w(sin28) - w(0) < = % sin2B, 

then the energy difference (3.52) is always negative, 

(A.17) 

(A.18) 

(A.19) 
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Here it follows from (3.6) and (3.39) that 

i6 sin 28 = - sgn 8(ulvH2)’/2(1 + m  sin28)1’2(h+ sin28)”2. (A.20) 

Utilizing (A.19) in (3.52) and (A.20) in the resulting 
change of variable (3.45), the energy difference as 

AE Q 4 sgn E . , ( ~ t , v H ~ ) ’ ~ ~ h  

where the function F is given by (A.6). 

F(i; h, m) cosh 22 dA- (r 
For 

0 < A < i2 < 371, 

integration by parts in (A.21) gives the inequality 
i.2 a F  

AE < - - ~ u , ~ H ~ ) ’ ’ ~ h  - sinh 2A d i  S, a i  
Thus the inequalities (3.41) and (A.lO) insure that the 
negative. If 

1 -in Q 22 < i < 0, 

expression, one obtains, with the 

F(A2 ; h, m) sinh i2 cosh A 2  

(A.22) 

(A.23) 

right-hand side of (A.23) is always 

(A.24) 

one may use a similar argument to obtain the same result. 
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